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HARP0NIC SYNTIESIZER
HAVING 20 SINE AND 20 COSINE TERMS

During work on structural transformations in crystals we have

had the problem of determining the structures of the phases involved.

In this connection, determination of the structure from x-ray dif-

fraction measurements, as is commonly the case, has required sum-

mation of Fourier series of the general form:

S =ZLi A exp 21i(hx+ky+lz) (1)xyz h k Ahike

where the sum is real and the coefficients, A, h, k, A, are, in

general, complex. This sum may be written in the form:

s3 = / IFh cos L2g(hx+ky+iz) + hkti" (2)

In order to obtain sufficient resolution in complicated cases, such

a sum may require evaluation at each of 60 values of each of the

coordinates in the range 0 - v. Such sums are necessarily too labo-

rious unless performed by punched-card methods or by suitable pro-

(1,2)
gramming on high-speed electronic computers . (However, the very

elegant XRAC computer of Pepinsky(3) is specially designed to compute

2-dimensional sections for such series.)

In the earlier stages of such structure investigations simpler

forms of the series are often useful. These may often be 1- or 2-

dimensional and centrosymmetric:

S I Ah0 cos 21 (hx+ky) (3)
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and

S1 - A %oO cos 21t hx, (4)

and the coefficients are now real. For the purpose of computation (3)

may be expanded:

S 2 ~~lh Abk coo 2a kil cos 2g~ hy

.. YI/. Ah sin 2a k~xI sin 2% hy. (5)

Evaluations of (4) and (5) are normally carried out using a manually

operated calculating machine and Beevers-Lipson(4 ) (or Patterson-(5) (s in)

Tunell(5)) strips which carry values A 2vhx at intervals of

2ir 2wi
2%or21

It is as an alternative to this procedure that attention was turned

to the possibility of devising a simple computer to perform these

summations. To be useful, such a computer must have great ease of

operation, require little or no maintenance, and furnish results of

sufficient accuracy (1% or better).

Numerous approaches have been made to this problem in the past.

Huggins( 6 ) designed a series of masks on photographic film with proper

distribution of density to permit the summation of (3) directly.

Woolfson(7) has replaced the photographic film with masks made from

sets of holes drilled in brass sheet. Neither of these methods permits

summing over indices h and k greater than about 10. With Huggins'

method it is difficult to get very good accuracy.

A novel analog machine for computing a sum of the type (3) has

been described by Shimizu, Elsey and McLachlan 8). This machine has

been built with eight terms. It would appear to be cumbersome and
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quite expensive if extended to many more terms. However, it has the

great advantage of inherently rapid operation.

Among the one-dimensional machines designed previously are a

number of different types, of which several are noteworthy. The

historical prototype and well-known harmonic synthesizer of Michelson (9 )

is not well adapted to rapid numerical calculation. More recently

designed machines involve the use of harmonically tapped potentiom-

eters(10 ) and mechanical generators based on the principle of the

scotch-yoke crosshead(11) which was also incorporated in some models

of Lord Kelvin's "Tide Predictors".

These designs all have certain drawbacks. Most of them are quite

expensive. Probably the most attractive one from the standpoint of

cost and utility is the machine using the harmonic potentiometer but

this computer is reported to give a gain in time of only about 4:1

over the use of strip-adding machine methods.

Consideration of the design of a computer for summing series

of the type,

S W7 (an cos 2nx (6)

1 n bn sin 27nxj

requires that a decision be made concerning certain main features.

Numerical methods, while well adapted tofinal calculations, do not

appear promising from a speed or cost standpoint. Analog computers

by nature appear better suited to the problem. It was decided to

survey the methods for generating and adding harmonic functions.

Formally, such a computer would have the components shown in Fig. 1
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FIGURE 1

Al - - - - An, Cosine Generators, cos n 0.
B1 - - - - En, Sine Generators, sin n 9.
a, - - - - an, Cosine Anrnlitude Controls.
bl-- --- b., Sine Amplitude Controls.
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Briefly, the requirements to be met are as follows:

(1) The cosine and sine sections should have
at least 20 terms each.

(2) The generators An (Bn) must be free of

overtones. (Error less than 1%).

(3) Amplitudes of generators must be readily
controlled.

(4) A simple method of addition and sub-
traction must be available so that the
terms can be added or subtracted at will.

(5) The output must be of a type easily and
quickly read. It is desirable that auto-
matic recording be achieved simply.

(6) Cost should be low, otherwise punched-
card methods compete.

(7) Over-all simplicity and speed of oper-
ation must be such that the method is
a marked improvement over the strip-
calculation methods.

Consideration shows that the generators may be of either of two

classes, namely, (1) those for which the amplitude depends on the time

or (2) those in which the amplitude is a function of a positional

coordinate only. The first class is exemplified by the various oscil-

lators, electronic and otherwise, in which the amplitude is given an

expression of the form

At-A sinit (7)

For the purpose in hand, such generators are not best suited since

amplitudes must be sampled at properly chosen times. They have marked

advantages when elaborated to the extent Pepinsky has gone in the XRAC.

As a result, we have confined our attention to generators of the

second class of which the "scotch-yoke" and sine-tapped potentiometers
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are examples. Such generators develop amplitudes which are functions

of a position coordinate

A . Ao  $in} e (8)

This makes for marked simplicity in withdrawing a result from the

machine.

It seemed that the requirements listed might be met best by

making application of the law of Malus for the transmission of light

through a pair of polarizers:

tr = Io cos 2 0/2 = 10 (l+cos 0) (9)Itr

Such a generator would consist of a small incandescent filament

light source, a rotatable polarizer, a fixed polarizer and a photo-

cell pick-up. This scheme apparently has not been used previously

and is now feasible because of the present low cost of polaroid

material and of commercial phototubes. The maximum amplitude of the

term is controllable by adjustment of the heating current for the

light source. Linearity of response is achieved by use of a vacuum

type photocell.

A test with Type "J" Polaroid in conjunction with a 922 (S-1

surface) cell indicated that equation (9) was obeyed within ± 0.1%

except for an additive constant attributable to a light leak in the

red. On recommendation, Type "H" Polaroid was selected since its

predominant light leak is in the blue. Transmission measurements

with the polaroids in crossed position and a S-1 cell still showed

an appreciable leak in the red. However, use of a 929 (S-4 surface)
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cell reduced the response to light leak to a negligible value.*

As a result of these tests a design for a complete analog

harmonic synthesizer was worked out. Balancing economy against

sufficient flexibility and accuracy, the number of sine and cosine

terms was set at twenty each. Figure 2 shows the generator design.

The synchronized drive for the two groups of generators is

similar to that employed by Michelson and is furnished by a cone of

spur gears each having lOn teeth, the cone-shaft being driven by a

60:1 worm reduction gear. Each generator carries a 20-tooth spur gear

to engage with the corresponding cone gear. Thus rotation of the cone

shaft through an angle of 0 rotates a generator through an angle of

n(G). (Rotation of the worm shaft by one revolution is equivalent

to 60 in 9). Figure 3 shows the assembly.

Figure 4 is a photograph of the assembly. A pair of sine and

cosine generators are on opposite sides of the corresponding cone gear,

supported by a cross member through the center of which passes the

cone shaft. The shaft hole in each case is bushed with a needle

bearing. In the lower part of the assembly each succeeding cross

member is advanced through an angle of ,/4 to provide clearance for

the generators, while in the upper portion the angle of advance is

necessarily increased to %/2.

The wiring circuit is shown in Figure 5. Each gang of light

sources is powered from one-half the secondary of a six-volt, center-

tapped transformer. In series with each lamp bulb is a 10-ohm wire-

wound rheostat permitting selection of (maximum) amplitude.

*We are indebted to Dr. Donald Tuomi for making the transmission

measurements and suggesting the use of the S-4 surface.
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Addition and subtraction are simply effected by adding the photo-

currents in parallel or antiparallel, respectively. For this purpose

the cosine cells (and similarly, the sines) have as voltage supply two

135-volt B-batteries, one for addition and the other for subtraction.

Each pair of leads from a photocell terminates at a 2-pole, 3-position

switch. The three positions correspond to + connection, connection to

auxiliary output and - connection.

The sum actually produced is

SI' '.n an + - a cos n e ± b b sinne (10)
n n C c n i n S

in which the coefficients an and bn may be + or - and for the sine terms

S + . (The phase angle, , is introduced by initial adjust-

ment of the fixed polaroids in the sine generators.) The sum required

is
S1 = ao + a n cos n 9 ±)-n bn sin n e (6')

The sum S1 is obtained from SI' thus

S1 = S1  - (M an ±Z bn) + so .  (11)

nn n n)a.(1

The removal of the second term of (11) is accomplished by addition (or

subtraction) of a parallel current furnished by a 1.5-volt dry cell

and controlled by a separate rheostat. In a similar manner ao is intro-

duced. Arrangement is made for the addition or subtraction of the sine

sum and the cosine sum.

A view of the control panel is exhibited in Figure 6. Shown in the

upper portion of the panel are the 3-position photocell switches, each
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t
with its amplitude control knob. The set of 20 cosine term is

immediately belo* the set of sines. Below on the left are two output

Jacks. The upper (J1 ) is for auxiliary output and the lower (J2 ) is

a microammeter on which the total sum is read.

Just below the jacks is a 4-position switch which connects to the

main output (1)) cosines, (2))- sines, (3)0' cosines +_ sines, (4)

7 cosines -\-sines. At the right of the lower panel are the power

switches, and switches and controls for introducing and removing constant

terms.

In practice each photocell is connected in turn to Jl to which

is connected a sensitive microammeter. The control for the term in

question is then adjusted to produce the proper amplitude. This is

done with the cone-shaft worm wheel set at 0 as shown on the revolution

counter. In this position the output is 2 an for a cosine term and bn

for a sine term (by equation (10)). As a result twice the coefficient

must be introduced for cosine terms while the coefficient itself is

used for sine terms.

After adjustment of these coefficients, the terms are connected

into the summing circuit + or - depending on the sign of an, bn . Now,

with the 4-position switch set in Position 1 the/ cosines is deter-

mined (i.e. 2 an) and half of its value is removed by adjustment of

the proper rheostat at the right. The sines are treated similarly,

using Position 2 of the 4-position switch, except that the output is

reduced to zero by the proper rheostat adjustment (at the right).
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The total sum can now be read on the main output in Position 3

or 4. Each half-revolution of the worm drive shaft corresponds to

change in 0 of 30.

While it has not been so used, a recording microammeter could be

connected conveniently to the output. With a synchronous drive

applied to the worm shaft, each sum over h at constant k of (5) would

then be automatically computed as a continuous function of x. The sums

over k at selected x's would then be recorded as continuous functions

of y.

We are indebted to the University Committee for Allocation of

Research Foundation Grants for aid covering most of the shop work of

assembly. We wish to express our appreciation to Mr. Gordon Laverack

and Mr. Audrey Stennett for their skillful workmanship.

Numerous additional applications of this machine are possible.

One, of interest to the present work, is in connection with the de-

termination of the roots of a polynomial. Since it is possible to

take out sine and cosine sums separately and simultaneously by the

introduction of an extra output Jack on the panel, the machine will

serve as an isograph" (12) by connection of these outputs to an

"x,y" recorder.

As is well known from the theory of functions of complex variables,

if zi are the roots of a polynomial, p(z) - /L A. zn, for p(z) = 0,
n=0

then the number of roots whose magnitudes are less than an arbitrarily

chosen number, p, can be determined from an x,y plot of

x - A. sin n6 and y = I An cos
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The number of times the function wraps itself around the point x = 0,

y a -Ao is then the number of roots for which zj is not greater than

p. Iteration then will lead to values of the roots.

This problem arises in the direct solution of the structure ampli-

tude equation for coordinates of the atoms in the unit cell, for

instance as outline by Avrami(13). For an especially simple (but

frequently met) centro-symmetric case, the amplitude equation becomes:

Fho\ N

Y- =Ah =L-cooh ai.
atom iml

It is here assumed all atoms have identical scattering power, f, there

Clj
are N atoms per cell and the parameters xj = T . The signs as well

as experimental magnitudes of the quantities Fho0 are presumed known

for a sequence of N values. These Ah may be readily written as linear

functions of iCcosh a,,cos h -2 a , etc. and the quantities cos ai

are roots of the polynomial

ao + Slx + a2 x2 + a3 x 3 + sx N 0.

The coefficients an are easily obtained from the quantities

-- n
Sn a - I cos x i and therefore from the amplitudes, Fh .
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